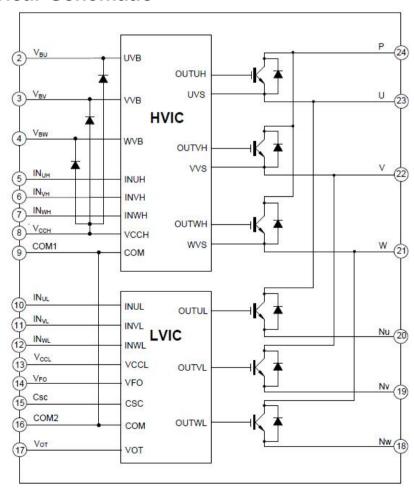


SYIM20G60BTB Intelligent Power Module

Features

- Integrated 6 low-loss IGBTs(600V/20A)
- Integrated high voltage gate drive circuit(HVIC)
- Built-in under voltage protection and over temperature, over current protection and temperature output
- Built-in fast recovery bootstrap diode with current limiting resistor
- Insulation class 1500Vrms / min
- High reliability and thermal stability, good parameter consistency
- Built-in temperature output

Ordering Information				
Product Name	Marking	Package Type		
SYIM20G60BTB	SYIM20G60BTB	DIP-24H		



DIP-24H

Applications

- Air conditioning compressor
- Refrigerator compressor
- Frequency converter
- Air cleaner

Internal Electrical Schematic

Absolute Maximum Ratings T_J = 25°C, unless otherwise noted

Parameter	Symbol	Value	Unit
Inverter Section	<u> </u>	•	•
Supply Voltage	V _{PN}	450	V
Supply Voltage (surge)	V _{PN (Surge)}	500	V
Collector-Emitter voltage	Vce	600	V
Each IGBT Collector Current, T _C =25°C,T _J ≤ 150°C	I _C	20	Α
Each IGBT Collector Current, (Peak), T _C = 25°C, T _J ≤ 150°C	I _{CP}	40	Α
Power dissipation per 1 chip T _C =25°C	P _D	53	W
Control section			
Control the supply voltage	V _{cc}	20	V
High-side control voltage	V _{BS}	20	V
Input signal voltage	V _{IN}	-0.3~VCC+0.3	V
Fault output supply voltage	V _{FO}	-0.3~VCC+0.3	V
Operating junction temperature range	T _J	-40 to 150	°C
Storage temperature range	T _{STG}	-40 to 125	°C
Single IGBT thermal resistance, junction-case	R _{eJCB}	1.89	°C/W
Single FRD thermal resistance, junction-case	R _{eJCF}	2.35	°C/W
Isolation test voltage (1min, RMS, f = 60Hz)	V _{ISO}	1500	Vrms

Note 1: The maximum junction temperature of the power chip is 150°C, in order to ensure that IPM can work safely, it is recommended that the average junction temperature Tj≤125°C (@Tc≤100°C)

Recommended Operation Conditions: $T_J = 25^{\circ}C$, unless otherwise noted

Control section

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	V _{PN}	-	300	400	V
Control the supply voltage	Vcc	13.2	-	20	V
High side control voltage	V _{BS}	13.0	-	20	V
High-side gate output voltage	V _{HO}	VS	-	VB	V
Low-side gate output voltage	V _{LO}	VSS	-	VCC	V

Electrical Characteristics: T_J = 25°C, unless otherwise noted

Inverter Section

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Collector-emitter saturation voltage	V _{CE(SAT)}	V _{CC} =V _{BS} =15V, V _{IN} =5V I _C =20A, T _J = 25°C	-	1.7	2.2	V
FRD forward voltage	V _F	V _{IN} =0V, I _F =20A, T _J = 25°C	-	1.6	2.2	V
	t _{on}		-	709	-	ns
	t _r		-	39	-	ns
Switching time (high side)	t _{off}	V_{PN} = 300V, V_{CC} = V_{BS} = 15V, I_{C} = 20A, V_{IN} = 0V \longleftrightarrow 5V, The inductive load is detailed in Figure 1	-	669	-	ns
	t _f		-	57	-	ns
	t _{rr}		-	170	-	ns
	t _{on}		-	843	-	ns
	t _r		-	114	-	ns
Switching time (low side)	t _{off}		-	697	-	ns
	t _f		-	44	-	ns
	t _{rr}		-	192	-	ns
Collector-Emitter Leakage current	I _{CES}	V _{CE} =600V	-	-	250	uA

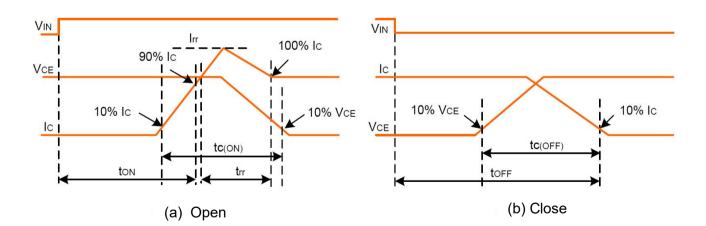
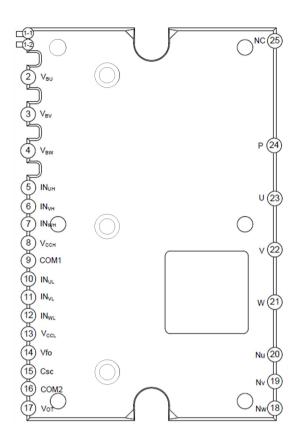


Figure 1. Definition of switching time

Control section


Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Quiescent V _{CC} supply current	I _{QCC}	V _{CC} =15V, V _{IN} =0V	-	-	3.5	mA
Quiescent V _{BS} supply current	I _{QBS}	V _{BS} =15V, V _{IN} =0V	-	75	-	uA
Fault output voltage	V _{FOH}	V _{SC} =0V, V _F Circuit: 10kΩ to 5V Pull–up	4.9	-	-	V
	V _{FOL}	V _{SC} =1V, I _{Fo} =1mA	-	-	0.9	V
Fault output pulse width	t _{FO}	Fault duration	40	-	-	us
Short-circuit protection trigger voltage	V _{SC(ref)}	V _{CC} =15V	0.42	0.46	0.51	V
Over temperature protection	OT _t	LVIC temperature	100	120	140	°C
Over temperature protection hysteresis	OT _{rh}	LVIC temperature Hysteresis	-	10	-	°C
Temperature output	.,	LVIC Temperature=25°C	0.88	1.13	1.39	V
(Figure 2)	V _{OT}	LVIC Temperature=90°C	2.63	2.77	2.91	V
Low-side	UV_Dt	V _{CC} senses the voltage	10	11	12	V
undervoltage protection (Figure 5)	UV_{Dr}	V _{CC} reset voltage	9	10	11	V
High-side	UV _{DBt}	V _{BS} senses voltage	10	11	12	V
undervoltage protection (Figure 6)	UV _{DBr}	V _{BS} reset voltage	9	10	11	V
On-threshold voltage	V _{IH}	Logic high	-	-	2.5	V
Shutdown threshold voltage	V _{IL}	Logic low	0.8	-	-	V

Bootstrap diode section

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward voltage	V _F	I _F =10mA, T _C =25°C	-	2.5	4.0	V
Reverse recovery time	t _{rr}	I _F =10mA, T _C =25°C	-	50	-	ns

Pin Assignment

Pin Description

Pin Number	Pin Name	Pin Description
1-1	COM	Internal common ground terminal
1-2	V _{CC}	Internal power terminal, No Connection
2	V_{BU}	U-phase high side floating IC supply voltage
3	V_{BV}	V-phase high side floating IC supply voltage
4	V_{BW}	W-phase high side floating IC supply voltage
5	IN _{UH}	U-phase high side gate driver input
6	IN _{VH}	V-phase high side gate driver input
7	IN _{WH}	W-phase high side gate driver input
8	V _{ССН}	High side gate drive supply voltage
9	COM1	Module common ground
10	IN _{UL}	U-phase low side gate driver input
11	IN _{VL}	V-phase low side gate driver input
12	IN _{WL}	W-phase low side gate driver input
13	V_{CCL}	Low side gate drive supply voltage
14	V_{FO}	Fault Output
15	Csc	External capacitor, used for short-circuit current detection input and low-pass filtering
16	COM2	Module common ground
17	V _{от}	Temperature output terminal

Pin Number	Pin Name	Pin Description
18	Nw	W-phase DC negative terminal
19	N _V	V-phase DC negative terminal
20	Nυ	U-phase DC negative terminal
21	W	Output for W Phase
22	V	Output for V Phase
23	U	Output for U Phase
24	Р	Positive DC-Link Input
25	NC	No Connection

Temperature output function description

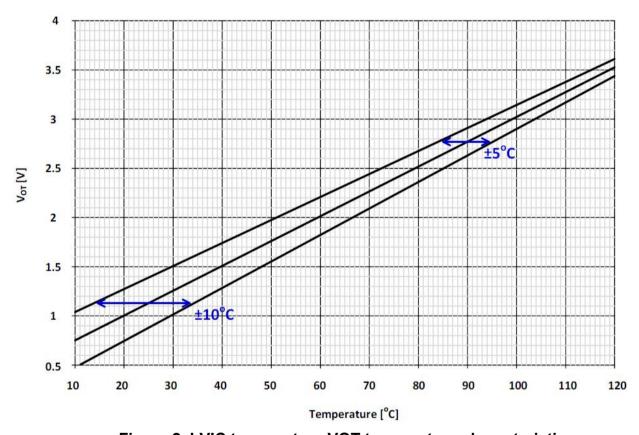


Figure 2. LVIC temperature VOT temperature characteristics

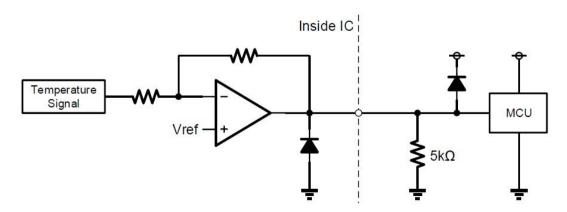


Figure 3. VOT output circuit

- (1) If the temperature monitoring function is used, connect $5k\Omega$ to the VOT pin, and ignore the internal OTP function. If the internal over temperature shutdown function is used, keep the VOT pin on (no connection).
- (2) When IPM is applied in low-voltage control (such as MCU working voltage of 3.3V), the output voltage of VOT may be greater than the control supply voltage of 3.3V in the case of a sharp rise in temperature, if the system is used for low-voltage control, it is recommended to connect a clamping diode between the control power supply and the VOT output signal to prevent overvoltage damage.

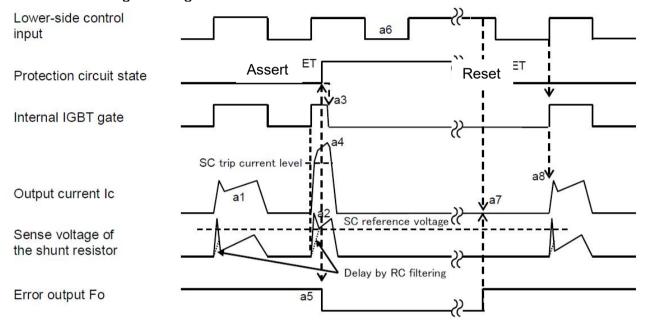


Figure 4. Short-circuit current protection (low side only)

Short circuit protection(Includes external shunt resistor and RC filter).

- a1: Normal operation:IGBT ON and outputs current.
- a2: Short-circuit current detection (short-circuit triggering).
- a3: All low-side IGBT's gate hard interrupts.
- a4: All low-side IGBT's are turned off.
- a5: The fault output pin outputs a fixed pulse width signal ($t_{EO} \ge 40$ us).
- a6: Input is "L": IGBT shutdown state.
- a7: Input is "H": Although the input is "H", the IGBT is still in the off state during this time if there is a fault output signal.
- a8: Normal operation: IGBT is ON, current is supplied to the load.

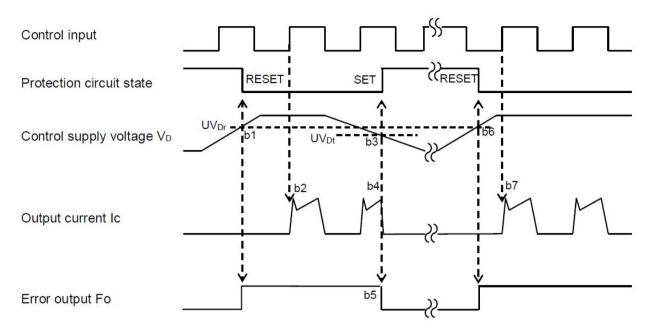


Figure 5. Undervoltage Protection (Low Side)

- b1: Control supply voltage VD exceeds under voltage reset level UV_{Dr}, and the circuit starts to work when the next input waveform arrives.
- b2: Normal operation: IGBT ON and outputs current.
- b3: VD level drops under voltage trip level (UV_{Dt}).
- b4: All low side IGBTs turn off in spite of control input condition.
- b5: FO pin outputs fault signal ($t_{FO} \ge 40$ us, and continuously outputs fault signal during under voltage).
- b6: VD level reaches UV_{Dr.}
- b7: Normal operation: IGBT ON and outputs current.

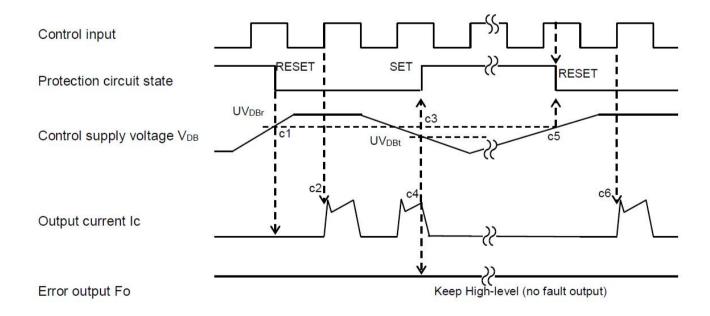


Figure 6. Undervoltage Protection (High Side)

- c1: Control supply voltage V_{DB} rises to UV_{DBR} , and the circuit starts to work when the next input signal arrives.
- c2: Normal operation: IGBT ON and outputs current.
- c3: VDB level drops to under voltage trip level (UV_{DBt}).
- c4: No matter what signal input, IGBT is turned off, but there is no fault signal output.
- c5: VDB level reaches UVDBr.
- c6: Normal operation: IGBT ON and outputs current.

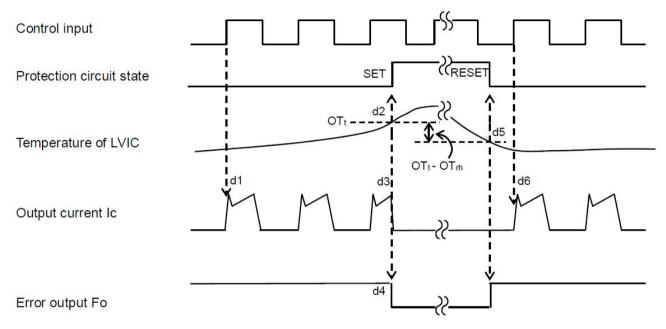


Figure 7. Overtemperature protection (low side only)

- d1: Normal operation: IGBT ON and outputs current.
- d2: LVIC temperature exceeds the over temperature protection trigger level(OT_t).
- d3: All low side IGBTs are turned off in spite of control input condition.
- d4:Continuously output fault signal during overtemperature, and the minimum pulse width is 40us.
- d5: The LVIC will reset when the temperature is lower than the over temperature protection level.
- d6: IGBT turns on when the next input signal control signal comes.

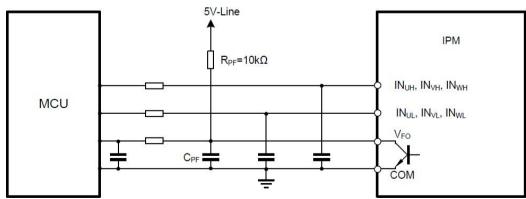
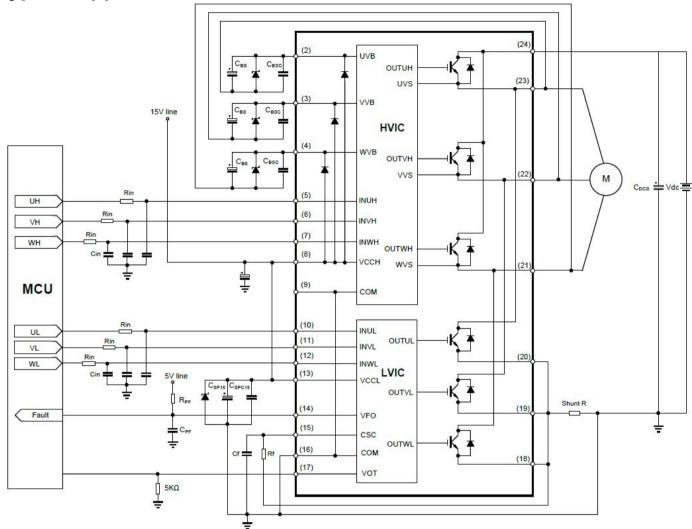
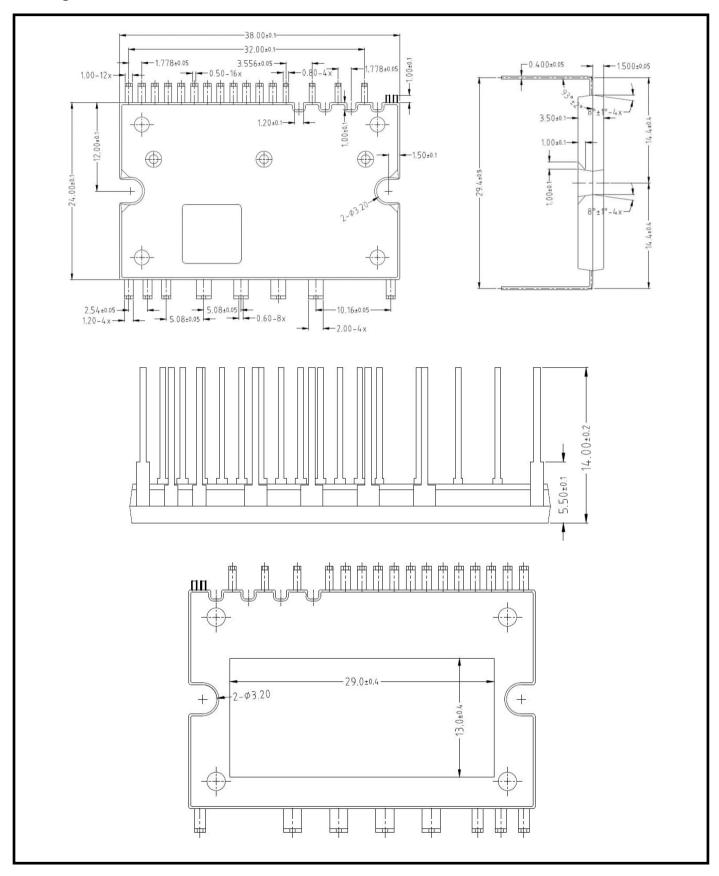



Figure 8. MCU input/output connection circuit (recommended)

Note: The RC coupling at each input should be adapted to the PWM control scheme and PCB layout. A 5K pull-down resistor is built into the IPM input signal section, so pay attention to the voltage drop at the input when using an external filter circuit.

Typical Application Schematic:



Remark:

- (1) The connection of each input pin should be as short as possible, otherwise it may cause misoperation;
- (2) The input signal is active high, and a 5 K Ω pull-down resistor is connected to ground at the input of each HVIC channel; In addition, an RC filter circuit can be added at the input to prevent surge noise caused by incorrect input;
- (3) In order to prevent surge damage, it is recommended to add a high-frequency non-inductive flat capacitor (0.1 μ F ~ 0.22 μ F) between PNs, and the connection of the capacitor should be made Keep it as short as possible;
- (4) The connection between the current sense resistor and the IPM should be as short as possible, otherwise the large surge voltage generated by the connection inductor may cause damage;
- (5) The filter capacitor at the input of the 15V power supply is recommended to be at least 7 times that of the bootstrap capacitor CBS;
- (6) Each external capacitor should be placed as close as possible to the IPM pin;
- (7) The VFO output is open and should be pulled up to the 5V supply through the resistor so that the Ifo is 1mA:
- (8) In the short-circuit protection circuit, please select RF and CSC with time constants in the range of 1.5~2 μs, and the wiring around RF and CSC should be as short as possible. The RF wiring should be close to the shunt resistor.

Package Outline DIP-24H

